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Structural Risk Minimization and VC Theory 

 Structural Risk Minimization:  

  

 For a given learning task, with a given finite 
amount of training data, the best 
generalization performance will be achieved if 
the right balance can be established between 
the accuracy on a particular training set, and 
the capacity of the machine. 



Bound on the Test Error (1) 

Suppose we are given n observations {xi,yi}. 
Assume binary labels (yi=1 for positive cases, yi=-1 for 

negative cases) 
There exists an unknown p(x,y) from which these data 

are i.i.d. drawn 
Suppose we have a machine that maps xi onto yi . 
The machine is defined by a set of possible mappings 
x → 𝑓 𝑥,𝑤 . 

The machine is deterministic: for a given input x, and a 
choice of w, it will always give the same output 
f(x,𝑤). 

 



Bound on the Test Error (2) 

Suppose there exists a trained machine 𝑤.  

The expectation of the test error for a trained 
machine is:  

   𝑅 𝑤 =  
1

2
|𝑦 − 𝑓 𝑥, 𝑤 |𝑑𝑃(𝑥, 𝑦) 

The quantity R(𝑤) is called the expected risk, or 
the actual risk.  

 

 

 

 



Bound on the Test Error (3) 

    

 

 

The empirical Remp(𝛼) is defined to be just the 
measured error rate on the training set. 

 

 

𝑅𝑒𝑚𝑝 𝑤

=
1

2𝑁
 |𝑦𝑖 − 𝑓 𝑥𝑖 , 𝑤 |

𝑖=1

 



Bound on the Test Error (4) 

Now choose     such that 0 ≤    ≤1.  

Then, with probability        , the following 
bound holds (Vapnik, 1995) 

 

 

 

where h is a non-negative integer called the 
Vapnik Chervonenkis (VC) dimension, and is 
the measure of “capacity”. 
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Bound on the Test Error (5) 

Three key points: 

1. Independent of P(x,y) 

2. Usually not possible to compute R(𝑤) 

3. If we know h, we can compute the right 
side 

𝑅 𝑤 ≤ 𝑅𝑒𝑚𝑝 𝑤 + (
ℎ log

2𝑁
ℎ
+ 1 − log (

𝜂
4)
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Bound on the Test Error (6) 

Given several different learning machines, i.e. 
family of functions, choose a sufficiently 
small    , the machine which minimizes the 
right hand side, gives the lowest upper 
bound on the actual risk. 

 

This is the essential idea of structural risk 
minimization.  

  

 





VC Dimension (1) 

VC dimension is a property of a set of functions 
f{(𝑤)}. 

Let’s consider functions that correspond to the 
two-class classification problem. 

A given set of n points can be labeled in 2n 
possible ways. 

If for each labeling we can find a member of the 
set f 𝑤  that can correctly assign those 
labels, then we say the set of points is 
shattered by that set of functions. 

 



VC Dimension (2) 

The VC dimension for a set of functions f 𝑤  
is defined as the maximum number of points 
that can be shattered by f 𝑤 . 

 

If the VC dimension is h, then there exists at 
least one set of h points that can be 
shattered. 



VC Dimension (3) 

Suppose 𝑥 ∈ 𝑅2, and the set f 𝑤  consists of 
oriented straight lines. 

 

 

 

 

 
Source: A tutorial on SVMs by C. Burges 



VC Dimension (4) 

While it is possible to shatter three points by 
this set of functions, it is not possible to find 
four points that can be shattered by 
oriented straight lines. 

 

The VC dimension of the class of oriented 
straight lines is 3.  

 

 

 

 

 



VC Dimension (5) 

Theorem: Consider some set of m points in 𝑅𝑑 .  
Choose any one of these points as the origin. 
Then the m points can be shattered by oriented 
hyperplanes iff the position vectors of the 
remaining points are linearly independent. 

Corollary: The VC dimension of the set of oriented 
hyperplanes in 𝑅𝑑  is d+1, since we can always 
choose d+1 points, and then choose one of the 
points as origin, such that the position vectors 
of the remaining n points are linearly 
independent.  

 
 
 
 
 



Support vector machines 

Suppose we have a seperating hyperplane 
𝑤𝑇𝑥 + 𝑏 = 0. 

Let 𝑑+ 𝑑−  be the shortest distance from the 
separating hyperplane to the closest positive 
(negative) example. 

We define the “margin” of the separating 
hyperplane as 𝑑+ + 𝑑− 

For the linearly separable case, SVM looks for the 
separating hyperplane with largest margin. 

 

 

 

 



Defining the margin (1) 

Let us suppose that all training data satisfy the 
following 

 
𝑤𝑇𝑥𝑖 +𝑤0 ≥ 1 for 𝑦𝑖 = 1 

𝑤𝑇𝑥𝑖 +𝑤0 ≤ −1 for 𝑦𝑖 = −1 

 

More compactly 

 
𝑦𝑖(𝑤

𝑇𝑥𝑖 +𝑤0) ≥ 1 ∀𝑖  

 

 

 

 



Defining the margin (2) 

Pick a point 𝑥1 on 𝐻+: 𝑤
𝑇𝑥1 +𝑤0 and pick another point 

𝑥2 perpendicular to 𝑥1 on 𝐻−: 𝑤
𝑇𝑥2 + 𝑤0. 

 
Note that w is orthonormal to both 𝐻+ and 𝐻− and thus, 

the inner product of the vector 𝑥1- 𝑥2 with w is 
(𝑥1−𝑥2)

𝑇𝑤 = 𝑥1 − 𝑥2 𝑤 cos 0   
 
We know that the perpendicular distance between 𝐻+ 

and 𝐻− is 
𝑤𝑇(𝑥1−𝑥2) = 2 

   
Thus, the margin between 𝐻+ and 𝐻− is 𝑥1 − 𝑥2 =2/ 𝑤   
 
 
 


