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Monte Carlo integration (1)  

We want to find the expectation of some function f(z) with 

respect to a probability distribution p(z). 



Monte Carlo integration (2)  

We obtain a set of samples 𝑧(𝑙) where 𝑙 = 1,… , 𝐿 drawn 

independently from the distribution p(z) and approximate 

the expectation by the finite sum 

We cannot always sample from p(z)! 



Rejection sampling (1)  

Suppose we wish to sample from a distribution p(z) 

whose inverse cdf does not exist in closed form 

 

Suppose further that we can evaluate p(z) for any given 

value z, up to some normalizing constant 

 

 

 

 

where 𝑝 𝑧  can be evaluated but 𝑍𝑝 is unknown 

 



Rejection sampling (2)  

In rejection sampling we choose a proposal distribution 

q(z) from which we can easily draw samples. 

 

We introduce a constant k whose value is chosen such 

that 𝑘𝑞(𝑧) ≥ 𝑝 𝑧 . 

 

Each step of the rejection sampler involves generating 

two numbers.  

 

1. We generate a number 𝑧0 from the distribution 

𝑞(𝑧).  
2. We generate a number 𝑢0 from the uniform 

distribution [0, 𝑘𝑞 𝑧0 ] 
  



Rejection sampling (3)  

If 𝑢0 ≥ 𝑝 𝑧0  reject else accept. 

 

Thus, the pair (𝑢0, 𝑧0) is rejected if it lies in the gray 

shaded region in the figure. The remaining pairs have 

uniform distribution under 𝑝 𝑧  and hence they are 

distributed according to p(z), which is the normalized 

verions of 𝑝 𝑧  

 

  



Important Sampling (1)  

Rejection sampling can be very inefficient in 

approximating the expectation 

 

 

 

 

by the finite sum approximation to the expectation 

because only a very small proportion of samples drawn 

from a uniform distribution will make a significant 

contribution to the sum.  

 

We want to choose the sample points where the product 

𝑓 𝑧 𝑝(𝑧) is large. 

 

  



Important Sampling (2)  

We use a proposal distribution q(z) from which it is easy to 

draw samples.  

 

 

 

 

 

 

 

The quantities 𝑟𝑙 =
𝑝 𝑧𝑙

𝑞(𝑧𝑙)
 are known as importance weights. 

Unlike rejection sampling all samples are accepted but after 

correcting for the bias introduced by sampling from the wrong 

distribution. 



Important Sampling (3)  

In most cases p(z) can only be evaluated up to a 

normalization constant 

 

 

 

where 𝑝 𝑧  can be evaluated easily. Similarly, 

 

 



Important Sampling (4)  

We then have 

 

 

 

 

 

 

 

 

 

𝑟 𝑙 =
𝑝 𝑧𝑙

𝑞 (𝑧𝑙)
 



Important Sampling (5)  

We can evaluate the ratio 

 

 

 

 

 

 

and hence 

 

 

 

where  

 

 

 



MCMC (1)  

A first order Markov chain is a series of RVs such that the 

following conditional independence property holds 

 

 

We can specify the Markov chain by the conditional 

probabilities in the form of transition probabilities 

 

 

The marginal probability for a particular variable in terms 

of the marginal probability for the previous variable in the 

chain  

 

 

 



MCMC (2)  

Homogeneity: A Markov chain is called homogeneous if 

the transition probabilities are the same for all m. 

 

Invariance: A distribution is said to be invariant, or 

stationary, with respect to a Markov if each step in the 

chain leaves that distribution invariant.  

 

 

 

Detailed balance: Transition probabilities satisfy detailed 

balance when   

 

 



MCMC (3)  

A sufficient (but not necessary) condition for ensuring that 

the required distribution p(z) is invariant is to choose the 

transition probabilities to satisfy the property of detailed 

balance. 

 

 

 

 

 

 

A Markov chain with detailed balance is reversible.  

 

 

 

 



MCMC (4)  

Our goal is to use Markov chains to sample from a given 

distribution. We can achieve this if we set up a Markov 

chain such that the desired distribution is invariant.  

 

Ergodicity: We must also require that for m → ∞, the 

distribution 𝑝 𝑧 𝑚  converges to 𝑝∗(𝑧) irrespective of the 

choice of initial distribution 𝑝 𝑧 0 . This property is called 

ergodicity.  

 

 

 

 



Metropolis-Hastings   

 

 

 

 

p(z) is invariant distribution of the Markov chain defined by the 
Metropolis-Hastings algorithm because it satisfies the detailed balance 
property.  



Gibbs sampling (1)   

 

 

 

 



Gibbs sampling (2)   

 

 

 

 

Gibbs sampling draws from the right distribution because: 
 
1. p(z) is invariant because conditional distributions together 

define the joint distribution. 
2. Markov chain is ergodic 
 
Gibbs sampling can be obtained as a special case of the 
Metropolis Hastings algorithm. 


